

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (AUTONOMOUS)

(Approved by AICTE, New Delhi, Affiliated to JNTUK, Kakinada) Accredited by NAAC with 'A+' Grade Recognised as Scientific and Industrial Research Organisation

SRKR MARG, CHINA AMIRAM, BHIMAVARAM – 534204 W.G.Dt., A.P., INDIA

Regula	tion: R23								
	MECHANICAL ENG	INEERIN	NG (N	Ainor	s)				
(Ap	plicable for AIDS, AIML, CIC, CE, C	SBS,CSE	, CSO	G, CS	IT, E	CE,	EEE &,	IT)	
	COURSE ST (With effect from 2023-24			h onv	vards)			
Course Code	Course Name	Year/ Sem	Cr	L	Т	P	C.I.E	S.E.E	Total Marks
B23MEM101	Engineering Materials	II-II	3	3	0	0	30	70	100
B23MEM201	Manufacturing Processes	III-I	3	3	0	0	30	70	100
B23MEM301	Engineering Mechanics and Strength of Materials [For all programmes except CIVIL]	ERII III-II	3		0	0	30	70	100
B23MEM302	Automobile Engineering [For CIVIL]								
B23MEM401	Thermal Engineering	IV-I	3	3	0	0	30	70	100
B23MEM501	*MOOCS-I	II-II to IV-I	3						100
B23MEM601	*MOOCS-II	II-II to IV-I	3						100
	,	ГОТАЬ	18	12	0	0	120	280	600

*Two MOOCS courses of any MECHANICAL ENGINEERING related Program Core Courses from NPTEL/SWAYAM with a minimum duration of 12 weeks (3 Credits) courses other than the courses offered need to be takenby prior information to the concern. These courses should be completed between II Year II Semester to IV Year I Semester.

Course Co	de Category	L	T	P	С	C.I.E	S.E.E	Exam
B23MEM1	01 Minors	3			3	30	70	3 Hrs.
		·						·
		ENGI	NEERI	NG MAT	TERIALS	8		
		(Min	or Degr	ee cours	e in ME)			
Course Ob								
	impart knowledge						rties and pred	lict their
behavior under different working conditions and methods.								
5 .	acquaint the know tems.	ledge abo	ut the co	oling cui	ves and P	hase diagra	ams of differe	ent alloy
4	impart knowledge				ent and su	ırface hard	ening method	ls in
im	proving the mecha							
	acquaint knowled							Cast Irons.
6. To	impart knowledge	about cor	nposite 1	materials	and its m	anufacturir	ng processes.	
	OTHER DESIGNATION OF THE PERSON OF THE PERSO							
Course Ou	t <mark>comes</mark> : At t <mark>he</mark> end	d of the co	urse, the	students	will be al	ole to		
S.No				come				KL
	e ter<mark>mine</mark> the pr ope derstanding perfec			th respect	t to <mark>cry</mark> sta	l structure :	and GE	К3
/	se different ferrous rious engineering			n their co	mpositio	ns and prop	perties for	К3
3 U	se different nonfer	rous mater	ials base	ed on the	r compos	itions and p	properties	К3
A	oply the principles anufacturing techn	of compo	site mate			_		К3
5 A	pply the knowledged testing technique	ge of nano					ynthesis	K3
aı	a comig teemique	<i></i>						
			SYL	LABUS				
	Structure of	crystallin	e solids:	: Atomic	structure	& bondii	ng in solids-	Unit cell,
UNIT-I	Space lattice, 0	Crystalliza	tion of n	netals, C	rystal stru	ctures and	its types, Co	ordination
(10 Hrs)	Number and A		_					_
(10 1113)	boundaries, ef							fects, Line
	defects, Planar defects and Volume defects-Concept of Slip & winning.							
			~· · · ·		a			
UNIT-II	Ferrous Alloy	s: Steels-(lassificک	ation of	Steels-Eff	tect of allo	ying element	s of steel -

(10 Hr	Properties, composition, and uses of Plain carbon, low carbon, medium & high carbon steels. stainless steels, high speed steels, Hadfield steels, tool and die steels. Cast irons-Structure and properties of grey CI, white CI, malleable CI, SG Cast iron, Alloy cast iron.
UNIT-I	
UNIT-I	
UNIT- (8 Hrs	Characterization techniques for hand materials - The scanning tunnering interoscopy
	WEASTY -
Text Bo	
1.	Materials Science & Engineering- An Introductionl, William D.CallisterJr. Wiley IndiaPvt. Ltd. 6th Edition, 2006, New Delhi.
2.	Material Science and Metallurgy by O.P.Khanna.
Referen	ice Books:
1.	Material Science and Metallurgy for Engineersl, Dr. V.DKodgire and S.VKodgire.
2.	Introduction to Physical Metallurgy by Sidney H AvnerTata McGraw-Hill Education 1997.
3.	Materials Science and Engineering: A First Course By V. Raghavan Phi 5th Edition 2011, NewDelhi.
Online	Learning Resources:
1.	https://archive.nptel.ac.in/courses/113/106/113106032/
2.	https://youtu.be/2rxbxNem1iI?si=OPMHsVLYIzNtVWNC
	https://www.coursera.org/learn/fundamentals-of-materials-science.
3.	
4.	https://www.coursera.org/learn/material-behavior.

		Course Cod	le: B2	3ME	M10
		SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		II B.Tech. II Semester MODEL QUESTION PAPER			
		ENGINEERING MATERIALS			
		(Minor Degree course in ME)			
Гim	e: 3 l	Hrs. Ma	ax. M	arks:	70 N
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
		10) x 2 =	= 20 N	Iark
			CO	KL	N
1.	a).	Describe how the atomic packing factor (APF) affects the density and strength of different crystal structures.	1	2	2
	b).	Differentiate between slip and twinning as mechanisms of plastic deformation in crystalline solids.	1	2	2
	c).	Explain the classification of plain carbon steels based on their carbon content with examples.	2	2	2
	d).	Differentiate between Grey Cast Iron and White Cast Iron in terms of structure and properties.	2	2	2
	e).	Explain why aluminium alloys are preferred in the aerospace industry.	3	2	2
	f).	Differentiate between brass and bronze based on their composition and applications.	3	2	2
	g).	Explain the difference between Polymer Matrix Composites (PMCs) and Metal Matrix Composites.	4	2	2
	h).	Describe why powder metallurgy is preferred for fabricating ceramic components.	4	2	2
	i).	Explain why nanomaterials have a high surface-to-volume ratio and how this affects their properties.	5	2	2
	j).	Describe how Scanning Tunneling Microscopy (STM) helps in studying nanomaterials.	5	2	2
			5 x 10	=50N	/Iar
		UNIT-1			
2.		Apply the knowledge of crystal structures to determine the coordination number and explain its significance in Simple Cubic, BCC, and FCC lattices. How does the coordination number affect the physical properties of metals?	1	3	1
		OR			
3.		Apply your understanding of crystal imperfections to explain point defects, line defects in crystalline solids with neat diagrams?	1	3	10

	UNIT-2			
4.	Compare the structures and properties of Grey Cast Iron, Malleable Cast Iron, and Spheroidal Graphite (SG) Cast Iron. Apply their characteristics to suggest suitable engineering applications for each type.	2	3	10
	OR			
5.	Compare the properties, composition, and uses of low carbon, medium carbon, and high carbon steels. Apply this classification to recommend suitable steels for construction, automotive components, and cutting tools.	2	3	10
	UNIT-3			
6.	Classify copper alloys into brasses and bronzes and analyze their suitability for marine and industrial applications.	3	3	10
	OR			
7.	Apply the properties of aluminium, magnesium, and titanium alloys to suggest their use in aerospace and automotive industries.	3	3	10
	UNIT-4			
8.	Explain how composites are classified and explain briefly about metal matrix composites?	4	3	10
	OR			
9.	Describe how Stir Casting and Filament Winding are used to make different composite parts. Give one example for each.	4	3	10
	UNIT-5			
10.	Explain how carbon nanotubes are made using Chemical Vapor Deposition.	5	3	10
	Fetal 1980 OR AUTOMOMOUS			
11.	How are nonmaterial's useful in batteries and cleaning the environment?	5	3	10

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks

Cours	se Code	Category	L	T	P	C	C.I.E.	S.E.E.	Exam
B23M	EM201	Minor	3			3	30	70	3 Hrs.
					ı		1		
			MAN	NUFAC'	TURIN	G PROC	ESSES		
			(N	Ainor D	egree co	ourse in 1	ME)		
Cours	e Objecti	ives:							
1.	To appl	y the princip	les of m	etal cast	ing for 1	nanufacti	aring variou	ıs mechanical	components.
2.								welding proce	
3.								cocess, forging	g processes.
4.	To give	a clear unde	rstandin	g of var	ious ma	chine too	ls.		
5.	To know	w about vario	ous unco	onventio	nal macl	nining pro	ocesses and	3D printing.	
Cours	e Outcon	nes: At the e	nd of th	e course	student	s are able	to		
S.No				O	utcome				Knowledge
	D (CD.	C .			1		1 1	Level
1.	7.0%	requirement					g paramete	rs based on	К3
2.	1000		ng prod	cess to	join va	rious ma	nterials bas	ed on their	К3
	applicat		ra of m	atal form	aing and	forging	processes t	o plan metal	
3.		sequences for					MOUS	o pian metai	К3
4.		the principle machining ta		nachinin	g to ch	oose sui	table mach	ine tool for	К3
				ous unco	onventio	nal mach	ining proce	sses and 3D	
5.		technologies					0 1		К3
					~~~~	DEIG			
	3.5	. 6. 4 •			SYLLA		. 1 1	1	D: 1
		_	_		•	le, Job, ba	atch and ma	iss production	, Primary and
UNIT	' <b>_</b>	ondary manu Sting: Moule		<b>U</b> 1		nronartia	a proporoti	on types Me	oulding tools
(10H)	rg)								oulding tools,
	Steps involved in making a casting, Types of patterns, pattern materials, pattern allowances, Advantages of casting.								
	unic			. 01 0450	<b>-</b>				
	We	elding: Intro	duction	to We	lding, (	Classifica	tion of we	elding process	ses, types of
UNIT		O			•			0 1	ance), Fusion
(10 H	Irs) welding (Gas: Air-acetylene, Oxy-acetylene welding, Oxy-hydrogen, Arc: Shielde							Arc: Shielded	
	Me	tal Arc Weld	ding, M	IG, TIG	), Solid-	state wel	ding (Frict	ion, Ultrasoni	c, Diffusion),

	Soldering and Brazing.						
UNIT- (10 H							
UNIT- (10 H							
UNIT							
Torrelle	ENCINEEDING COLLECT						
Textbo	LIVOINELINIUG COLLEGE						
1.	Manufacturing Processes by HN Gupta, RC Gupta, Arun Mittal  Elements Of Workshop Technology Volume-2 by S.K. Hajra Choudhury, Nirjhar Roy;						
2.	MPP Pvt.Ltd, 16 th edition,2023						
Refere	ence Books:						
1.	A.Ghosh & A.K.Malik, Manufacturing Science, East West Press Pvt. Ltd, 2010						
2.	R.K. Jain, Production Technology, Khanna Publishers, 2022.						
3.	Production technology by P.C.Sharma, S.Chand and company,2006						
4.	Manufacturing Technology Volume 2 (machine tools) by P N Rao, 4 th edition,2018						
5.	Ian Gibson, David W Rosen, Brent Stucker., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2/e, Springer, 2015.						
e-Reso	urces						
1.	https://elearn.nptel.ac.in/shop/nptel/principles-of-metal-forming-technology/?v=c86ee0d9d7ed						
2.	https://archive.nptel.ac.in/courses/112/105/112105233/						

		Course (	Code: B	23ME	M201
		SAGI RAMA RISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. I Semester MODEL QUESTION PAPER			
		MANUFACTURING PROCESSES			
		(Minor Degree course in ME)			
Tim	e: 3 H	Irs.	Max.	Mars:	<b>70 M</b>
		Answer Question No.1 compulsorily			
		Answer <b>ONE Question</b> from <b>EACH UNIT</b>			
		Assume suitable data if necessary			
			10 x 2	=20 N	<b>Aarks</b>
			CO	KL	M
1.	(a)	What is the difference between primary and secondary manufacturing processes?	1	1	2
	<b>(b)</b>	List out the advantages of casting.	1	1	2
	(c)	Explain Soldering and Brazing	2	2	2
	(d)	Classify the types of welding.	2	2	2
	(e)	Explain the concept of spring back.	3	2	2
	<b>(f)</b>	Compare Drop forging and press forging.	3	2	2
	(g)	What is the difference between single and multi-point cutting tools?	4	1	2
	(h)	List out the specifications of a lathe machine.	4	1	2
	(i)	What are the applications of unconventional machining?	5	1	2
	<b>(j)</b>	List out the advantages of 3D printing.	5	1	2
			5 x 10	= 50 N	
		UNIT-1	СО	KL	M
2.		Demonstrate the different types of patterns with neat sketches.	1	3	10
		OR			
3.		Use neat sketch to explain different pattern allowances.	1	3	10
		UNIT-2			
4.		Compute the differences between MIG and TIG welding.	2	3	10
		OR			
5.		Discuss shielded metal arc welding and submerged arc welding using neat sketches.	2	3	10
		UNIT-3			
		0111-5	1		

6.	Discuss embossing, coining and stretch forming with a neat sketch.	3	2	10
	OR			
7.	Explain different forging operations with neat sketches.	3	2	10
	UNIT-4			
8.	Compute the differences between shaper and planar.	4	3	10
	OR			
9.	Explain about the up milling and down milling processes using a neat sketch	4	3	10
	UNIT-5			
10.	Demonstrate the working of laser beam machining using a neat sketch.	5	3	10
	OR			
11.	Determine the step by step procedure in 3D printing.	5	3	10

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks



ENGINEERING COLLEGE
AUTONOMOUS

~		T ~ .				I ~						
	ode	Category	L	T	P	C	C.I.E.	S.E.E.	Exam			
B23M	EM301	Minor	3			3	30	70	3 Hrs.			
		ENGINEERI	NG ME	CHANI	CS & ST	TRENGT	H OF MAT	TERIALS				
			(M	linor De	gree cou	ırse in MI	Ε)					
Course	e Objec	tives:										
1.	To lea	Γο learn fundamental concepts of kinematics of particles to the analysis of simple, practical										
2.	To far	niliarize Trusses	and fric	tional fo	rces in n	nechanical	application	ıs.				
3.	Apply	the concept of	stress a	nd strair	n to anal	yse under	axial, shea	ar and bendi	ng loads, and			
Course	e Outco	omes: At the end	of the c	ourse, st	udents w	ill be able	to					
S.No				Out	tcome				Knowledge			
1.	Solve	for the resultant	of the gi	iven forc	e system	s & Analy	ze force sy	stems	К3			
2.	Deter	mine centroid, c	enter of	gravity a	and mom	ent of iner	tia of areas	and	К3			
3.	Analy	ze the forces of	the mem	bers in t	russes an	d Solve p	roblems on	frictional	К3			
4.	Under	stand the concep	ots of sin	nple stres	sses & st	rains and	Apply analy	ytical	К3			
5.	Deter	mine the flexura	l and To	rsional s	tress dis	tributions	of beams su	bjected to	К3			
	1		1			7 6			1			
			<i>j</i>	S	YLLAB	US						
	Tı	ntroduction to	Engine	ering M	echanic	s– Basic	Concents -	Scope and	Applications			
UNIT												
(10Hı		System of Forces: Force, Specification of force - Resultant of Force Systems - Coplanar Concurrent Forces—Free Body Diagrams, Moment of a force, Equations of Equilibrium of										
		Coplanar Systems.										
		- •										
	1_		<b>.</b> .				~					
		arallel Force S					Concept of	f Centroid -	- Centroid of			
UNIT		mple figures - C		•	_			.: m	C FDI			
(10 H)	· ·	rea Moments						nertia, Trans	ster Theorem,			
	IV.	Ioments of Inert	ia of rect	tangular,	circular,	, I, and T s	sections					
	E	quilibrium of	Systems	of Ford	es: Gen	eral case	of Force sy	stem - Ana	lysis of plane			
UNIT-	·III   tr	usses, Method o	f Joints a	and Meth	nod of Se	ections for	plane truss	es.				
(10 H		Friction: Introduction, limiting friction and impending motion, Coulomb's laws of dry							•			
	fr	iction, coefficie	nt of fric	tion, Ap	plication	of Frictio	n - wedge a	nd ladder fri	ction.			

UNIT (10 H		<b>Simple Stresses:</b> Stress, Strain, Stress-Strain curve, Lateral strain, Poisson's ratio and factor of safety; Bars of varying cross-section, Strain energy due to axial loading. <b>Shear Forces and Bending Moments:</b> Beam - types of loads, types of supports, types of beams, Shear Force and Bending Moment; S.F. and B.M. diagrams for cantilever, simply supported beams subjected to different loads						
	1							
		Flexure Stresses in Beams: Theory of pure bending, Flexural formula, Section modulus						
UNIT		of rectangular, circular, I, and T sections, Determination of bending stress.						
(10 H	(rs)	<b>Torsional Stresses in Shafts:</b> Pure torsion, Torsion formula, analysis of torsional stresses						
		for circular cross-section parts.						
Textb	ooks:	•						
1.	Eng	rineering Mechanics, S. Timoshenko, D. H. Young, J.V. Rao, S. Patti. McGraw Hill						
2.	Eng	rineering Mechanics: Statics and Dynamics; A.K.Tayal						
3.	Ana	alysis of Structures by Vazirani and Ratwani - Vol. 1, Khanna Publishers						
Refere	ence l	Books:						
1.	Eng	rineering Mechanics, Statics and Dynamics, I.H. Shames., PHI, 2002. 4th Edition.						
2.	Stre	ength of Materials by Timoshenko, CBS Publishers.						
3.	Stre	ength of Materials by Sadhu Singh, Khanna Publishers.						
e-Reso	ource	s FNGINFFRING COLLEGE						
1.	_	s://mechanicalc.com/reference/strength-of-materials						
2.	http	s://nptel.ac.in/courses/122104014/						
3.	http	s://nptel.ac.in/courses/112103108/						
4.	http	s://nptel.ac.in/courses/112103109/						

		Course C	Code: B	23ME	M301
		SAGI RAMA RISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			
		ENGINEERING MECHANICS & STRENGTH OF MATERIA	LS		
		(Minor Degree course in ME)			
Tim	e: 3 H	Irs.	Max.	Mars:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= 20 N	<b>Aarks</b>
			CO	KL	M
1.	(a)	Distinguish between scalar and vector quantities.	1	1	2
	<b>(b)</b>	State Varignon's theorem	1	1	2
	(c)	Distinguish between centroid and Centre of gravity.	2	2	2
	(d)	State the perpendicular axis theorem	2	2	2
	(e)	Write the difference between perfect truss and imperfect truss.	3	2	2
	<b>(f)</b>	State laws of friction	3	2	2
	(g)	Define Factor of Safety	4	1	2
	(h)	List out different types of beams.	4	1	2
	(i)	Define section modulus	5	1	2
	<b>(j</b> )	Write the torsion equation and explain the terms in it.	5	1	2
	•		5 x 10	= 50 N	<b>Aarks</b>
		UNIT-1	CO	KL	M
		Determine the resultant and its position of the force system shown in Fig 1.			
		400 N 7 300 N			
2		30° 309 200 N	1	•	
2.	<b>a</b> )	30°  30° 200 N	1	3	6
		20°			
		Fig. 1			
		500 N			
	1.	Two forces act at an angle of 120 _o . The bigger force is 40 N and the			
	<b>b</b> )	resultant is perpendicular to the smaller force. Determine the smaller force.	1	3	4
	1	OR			
	1	Two identical rollers, each weighting $Q = 100 \text{ N}$ are supported by an	1	•	10
3.		inclined plane and a vertical wall as shown in Fig. 2. Applying conditions	1	3	10

	of equilibrium, determine the read Assuming the surfaces are smooth	ctions at points of support A, B and C.			
	Assuming the surfaces are smooth	Q			
	τ	JNIT-2			
4.	Determine the centroid of shaded in the cent	region as shown in Fig. 3  R120 mm  160 mm  x  Fig 3	2	3	10
		OR			
5.	Determine the Moment of Inercomposite area shown below in Fi	G COLLEGE	2	3	10
		JNIT-3			
6.	and tied to the wall by a rope as sh horizontal floor. The static friction between block B and floor is 0.	ng on another block B of weight 250 N nown in Fig. 5. The block B is resting on on between blocks A and B is 0.2 and 0.25. A force P whose inclination with ek B such that motion impends. Find the in the rope.	3	3	10

	2			1
	A P			
	B 30°			
	Fig. 5			
	OR			
	Determine forces in all members of the truss shown in Fig. 6 below.			
	2000 N 4000 N			
	В			
7.	Fig. 6	3	3	10
	$60^{\circ}$ $60^{\circ}$ $60^{\circ}$ D			
	E			
	$R_A$ $3m$ $R_B$			
	UNIT-4			
	A mild steel bar 25 mm diameter and 250 mm long is placed inside a			
	brass tube, having an external diameter of 30 mm and internal diameter			
8.	of 25 mm. The combination is then subjected to an axial load of 45	4	3	10
	KN. Find (a) the stresses in the tube and the rod, (b) the shortening of			
	rod. Take Es= $210$ GPa, and E = $80$ GPa.			
	OR			
	A beam 8.5 m long rests on supports 5 m apart. The beam carries			10
9.	aUDL of 50 kN/m length between the supports. The beam also carries	4	3	10
	apoint load of 60 KN at the mid span. Construct the SFD and BMD.			
	UNIT-5			
	Stating the assumptions of pure bending and derive the Flexure formula			
10.	$M  \sigma  E$	_	2	10
10.	<del>_</del> = - = <del>_</del>	5	3	10
	l y R OR			
	A solid circular shaft has to transmit 120 kW at 120 rpm.			
	Themaximum torque is 25% greater than the mean torque. Find			
11.	thediameter of the shaft required if the maximum shear stress is not	5	3	10
***	toexceed 80 N/mm ² and the angle of twist is not to exceed 1° in a			
	length of 250 cm. Take $G = 8 \times 104 \text{ N/mm}^2$ .			
Ь		/_MAR	TZC	I .

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks

Cou	se Code	Category	L	T	P	С	I.M	E.M	Exam
B231	MEM302	Minor	3			3	30	70	3 Hrs.
						INEERI			
			(Mi	nor Deg	ree cour	se in ME	)		
Cour	se Objecti								
1.	To make Vehicles	students famil	liar with tl	he constr	uctional	details of	chassis aı	nd body and	Electric
2.	To unders	stand about va ering	irious stee	ring syst	ems, Tra	nsmissior	n system, s	steering gea	r boxes and
3.	To introduce students to the rear axles and types of suspension systems.								
4.		uce students to spects of vehice	_	-	wheels a	and tyres	and provi	des the infor	mation on
5.	To unders	stand Trouble	Shooting	and Mai	ntenance	•			
Cour	se Outcon	nes: At the en	d of the co	ourse, stu	idents wi	ll be able	to		
C M-				0-4-					Knowledge
S.No	No Outcome								Level
1.		e the Automo							K2
2.	and final	<b>e</b> various type drive systems	s.	NGII	ALLE	CHNC	OUL	LEGE	K2
3.		<b>e</b> key element wheels, tires.		ing geon	netry in a	utomobile	e and susp	ension	K2
4.		e the concepts	s of brakes	s, electric	cal and el	ectronic s	systems, p	ollution	К2
5.	Control 1 Apply tr	ouble shoot a	nd mainte	nance in	Automot	ive Vehic	eles.		K3
٦.									IXJ
				SY	LLABU	S			
UNI (10I		troduction tomobile engi				-	,		dy, Types of vdrogen cells.
		itches: princi	ple, Type	es: cone	clutch, si	ngle plate	e clutch,	, Multi plate	e clutch, Fluid
UNIT					ing Princ	ciple, , Ty	ypes: Slid	ing mesh, C	Constant mesh,
(10 H	· -	nchromesh, To	_			_	_		
		<b>ive shaft and</b> eel drive.	I Final D	<b>rive:</b> Di	tterentia	, Power	transmiss	ion: Front,	Rear and Four-

		Suspension System: Leaf springs, Coil springs, Torsion bar, Shock absorber.						
UNIT-III (10 Hrs)		Steering System: Steering geometry: camber, caster, Kingpin angle, Toe-in, and Toe-out.						
		Steering gear ratio, Power-Steering						
		Wheels: Disc and Drum type, Tires: Tire Construction, Tube and Tubeless Tires.						
		Braking System: Necessity, Parking and Power Brakes, Parts and Working Principle of						
		Mechanical, Air and. Hydraulic Brakes: Master and Wheel cylinder, Anti-lock Braking						
UNI	r_ <b>i</b> \	System.						
		Air pollution and their control: Catalytic Converters,						
(10 Hrs)		Electrical and Electronic system: Starting System, Ignition system, battery,						
		ECU/ECM.						
		Batteries: Types of batteries.						
UNI	T-V	Trouble shooting and Maintenance: Engine and Vehicle Troubles: Descriptions and their						
(10 I	Hrs)	Causes and Remedies, Periodic Maintenance, Preventive and Breakdown.						
Textb	ooks:							
1	Auto	omotive Mechanics (10/e) - William H. Crouse and Donald L. Anglin, Tata McGraw-Hill						
1.	Publ	Publishing Company Limited, ISBN: 0-07-059054-0.						
_	Auto	mobile Engineering – KK Jain/ RB Asthana, Tata McGraw-Hill Publishing Company						
2.	Limi	ted, ISBN: 0-07-044529-X.						
3.	Elect	tric and Hybrid Vehicles, Tom Denton, Taylor & Francis,2018.						
4.	Meh	rdad Eshani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and						
4.	Fuel	Cell Vehicles:Fundamentals, Theory and Design", CRC Press, 2 nd Edition (Unit-I,II)						
Refer	ence I	Books:						
	Auto	motive Mechanics – S. Srinivasan, Tata McGraw-Hill Publishing company Limited, ISBN:						
1.	0-07	-044941-6						
2.	Inter	nal Combustion Engines – Heywood, John, B. McGraw-Hill Publications Limited.						
	Auto	tomotive Engines- S Srinivasan, Tata McGraw-Hill Publishing Company Limited, ISBN: 0-						
3. 07-040265-5.		40265-5.						
4.	Hybrid Vehicles and the future of personal transportation, Allen Fuhs, CRC Press,2011.							
e-Res	ource	s:						
1.	https	://nptel.ac.in/courses/107/106/107106088/						
2.	https	://nptel.ac.in/courses/108/103/108103009/						
3.		://www.theengineerspost.com/category/automobile-engg						

		Course (	Code: B	23ME	M302
		SAGI RAMA RISHNAM RAJU ENGINEERING COLLEGE (A)			R23
		III B.Tech. II Semester MODEL QUESTION PAPER			1
		AUTOMOBILE ENGINEERING			
		(Minor Degree course in ME)			
Tim	e: 3 H	Irs.	Max.	Mars:	70 M
		Answer Question No.1 compulsorily			
		Answer ONE Question from EACH UNIT			
		Assume suitable data if necessary			
			10 x 2	= <b>20</b> I	Marks
			CO	KL	M
1.	(a)	What is an Automobile?	1	2	2
	<b>(b)</b>	What is the function of clutch? Write its classifications.	1	1	2
	(c)	What is meant by hydrogen cell?	2	1	2
	(d)	What is the use of differential in an automobile?	2	1	2
	(e)	Write the difference between slip joint and U-joint.	3	1	2
	<b>(f)</b>	What are the need of engine cooling and lubrication?	3	1	2
	(g)	Write the use of master cylinder.	4	1	2
	(h)	Name the basic components of any suspension system.	4	1	2
	(i)	What is a spark plug and what is its role?	5	1	2
	<b>(j</b> )	What is the purpose of a radiator in a vehicle?	5	1	2
			= 10	=0.3	
			5 x 10		
		UNIT-1	CO	KL	M
2.		What are the components of an automobile? Explain some of them?	1	3	10
		OR			
3.		Describe the main components of an electric vehicle power train and	1	3	10
		briefly explain their functions.			
		UNIT-2			
4.	1	Explain the principle of a clutch. Discuss its importance	2	3	10
7.	+	OR		3	10
5.	+	What is Differential? Explain with a neat Diagram?	2	3	10
٥.		What is Differential: Explain with a fieat Diagram:	4	3	10
	+	UNIT-3			
6.	+	Explain the Ackermann Steering mechanism with neat sketch	3	3	10
•					10

	OR			
7.	What is meant by Wheel alignment? Write short notes on Caster and Camber?	3	2	10
	UNIT-4			
8.	Explain the working of hydraulic brake system with neat diagram	4	3	10
	OR			
9.	List the various pollutants from the automobile. List the various Technologies used to control them	4	3	10
	UNIT-5			
10.	Discuss the typical fault symptoms of a malfunctioning transmission system (manual or automatic). How would you test and troubleshoot it?	5	3	10
	OR			
11.	What is the difference between scheduled and unscheduled maintenance?	5	3	10

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks



ENGINEERING COLLEGE
AUTONOMOUS

Cour	rse Code	Category	L	T	P	C	I.M	E.M	Exam	
B23N	<b>MEM40</b> 1	Minors	2	1		3	30	70	3Hrs.	
						<u> </u>		l		
			TH	ERMA	L ENGI	NEERIN	G			
			(Mi	nor De	gree cou	rse in M	E)			
Cour	se Obje	ctives: The objectives:	ectives of t	he cours	se are					
1.	_	art the knowled								
2.		ole the student t		ın energ	y audit o	f any med	chanical sy	ystem that excl	hanges heat	
		d work with the surroundings.  Description expose the basic principles of steam properties and industrial application of steam								
3.		o expose the basic principles of steam properties and industrial application of steam								
4.	Tostud	thethermodyna	micanalys	isofRan	kinecycl	eanditsmo	odification	S.		
Cour	se Outc	omes: At the en	d of the co	ourse, th	e student	ts will be	able to			
S.No				Outo	rome				Knowledg	
	Apply the concepts of thermodynamics to real life systems.					Level				
1.								no dymomic	K3	
2.	Apply the first law of thermodynamics to compute various thermodynamic Properties subjected to different thermodynamic processes.							<b>K3</b>		
	<b>Determine</b> the performance of heat engines and heat numbs using concepts of									
3.		l law of thermo							К3	
4.		the phenomena ent scenarios.	of pure su					es of steam in	К3	
5.	Comp	ute the perform	ance parar	neters o	f ideal ar	ıd modifi	ed Rank in	e cycles.	К3	
	•									
				SY	YLLABU	JS				
UNIT-I (8Hrs)  Basic Concepts: System, boundary, Surrounding, control volume, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Thermodynamic Equilibrium, State Property, Process, Cycle, Reversibility, Quasi static Process, Irreversible Process Energy in StateandinTransition,Types,WorkandHeat,PointandPathfunction.Zerothlawof thermodynamics										
					T 1.		. =:	. 1 0 1		
UNIT-II (10Hrs)		First law of Isolated system pressure- Enthachange of state First law append states-Heat Expansion process.	ns and st alpy- First	eady flo law app	ow systements of the system of	ems- Spe low syste	cific heat ems- Syste	es at constant ems undergoin	volume and g a cycle and -Properties of	

		Second law of thermodynamics: Limitations of the First Law – Thermal Reservoir,							
UNI	T-III	Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics,							
(10 Hrs)		Kelvin Planck and Clausius Statements and their Equivalence Corollaries, PMM of							
		Second kind, Third Law of thermodynamics.							
UNIT-IV (12Hrs)		<b>Properties of Pure Substance:</b> Definition of pure substance, phase change of a pure substance, p-T (Pressure-Temperature) diagram for a pure substance, p-V-T(Pressure-Volume-Temperature) surface, phase change terminology and definitions, Formation ofsteam, determining various properties like Enthalpy, Entropy, Internal energy during steam formation, Enthalpy-Entropy (h-s) charts (Mollier's diagram), Determination of dryness fraction using Tank or bucket calorimeter, throttling calorimeter, separating and throttling calorimeter.							
UNI (8H	T-V (rs)	Vapor Power Cycles: Vapor power cycle- Rankine cycle- Reheat cycle (single Reheater)- Regenerative cycle- Thermodynamic variables affecting efficiency and output of Rankine and Regenerative cycles (Single open feed water heater)- Improvements of efficiency, Binary vapor power cycle							
Note:	Steam	Table book by RS Khurmi is allowed.							
Text	Books:								
1.	Appli	ed Thermodynamics-IbyR.Yadav,CentralBookHouse.							
2.	Engir	neeringThermodynamics,PKNag6thEdition,McGrawHill.							
3.	Therr	nal Engineering,byR.K. Rajput,LakshmiPublications.							
Refer	rence B								
1.		eatise on Heat Engineering by VasandhaniandKumar.							
2.	+	modynamics-An Engineering Approach by YCengel&Boles.							
3.	Therr	nal Science and Engineering by D.S.Kumar, S.K.Katariaand Sons.							
4.	Therr	nal Engineering by PL Ballaney,KhannaPublishers.							
5.	Therr	nal Engineering by M.L. Marthur&Mehta, Jainbros.Publishers.							
e-Res	sources	•							
1.		//nptel.ac.in/courses/127/106/127106135/#							
		//nptel.ac.in/courses/112/103/112103275/#							
2.	mups:	//IIpter.ac.III/courses/112/103/1121032/3/#							

					R23
					112,
Tim	e· 3 F	SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A  IV B.Tech. I Semester MODEL QUESTION PAPER  THERMAL ENGINEERING  (Minor Degree course in ME)  e: 3 Hrs.  Answer Question No.1 compulsorily  Answer ONE Question from EACH UNIT  Assume suitable data if necessary  a). State the Quasi static Process b). Describe the heat and work c). State the first law of thermodynamics d). Define Internal Energy e). Give the Clausius statement of the second law f). State the PMM of Second kind g). Define Dryness fraction h). Define the saturated steam i). What are the different components of a Rankine cycle. j). What is a Binary vapor power cycle  UNIT-1  What do you mean by thermodynamic System? Discuss different types of systems  OR Discuss about Macroscopic and Microscopic viewpoints	Iax. M	larks:	70 N
			iax. IV	Idi No.	701
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			
		•	10 x 2	- 20 N	 Iark
			CO	KL	M
1.	9)	State the Quasi static Process	1	1	2
1.			1	2	2
			2	1	2
	<u> </u>	-	2	1	2
			3	1	2
	<u> </u>		3	1	2
			4	1	2
			4	1	2
	<u> </u>	FMI-IMFEDIMI-III FI-E	5	1	2
	<u> </u>	E-+	5	1	2
	<b>J</b> )*				
			5 x 10	) =50N	 /Iark
		UNIT-1			
		- '		_	
2.			1	2	10
		OR			
3.		Discuss about Macroscopic and Microscopic viewpoints	1	2	10
		UNIT-2			
4.	1	Explain the joules experiment. State its importance in thermodynamics.	2	2	10
	1	OR			
		A turbine operates under study flow condition receives steam at the			
		following state: pressure= 1.2 Mpa, Temperature =188°C, Enthalpy=			
5.		2785 KJ/Kg, Velocity =33.3 m/sec and elevation=3m. The steam leaves	2	3	10
		the turbine at the following state: pressure= 20Kpa, Enthalpy= 2512			
		KJ/Kg, Velocity =100 m/sec and elevation=0m.Heat is lost to the			

	surrounding at the rate of 0.29KJ/sec. If the steam flow to the turbine is			
	0.42 Kg/sec Determine the power output of the turbine in KW			
	UNIT-3			
6.	Discuss the limitations of first law of thermodynamics. State the various statements of second law of thermodynamics.	3	2	10
	OR			
7.	A fish freezing plant requires 40 tons of refrigeration. The freezing temperature is $-35^{\circ}$ C while the ambient temperature is 30°C. If the performance of the plant is 20% of the theoretical reversed Carnot cycle working within the same temperature limits, calculate the power required. Take: 1 ton of refrigeration = 210 kJ/min.	3	3	10
	UNIT-4			
8.	Calculate the internal energy, enthalpy and entropy of 1kg of steam at 10 bars, when the condition of steam is (i) 0.9 dry, (ii) dry and saturated, (iii) superheated steam at 225°C	4	3	10
	OR			
9.	Explain in detail with a neat sketch the working of throttling calorimeter.	4	2	10
	UNIT-5			
10.	Illustrate the working of steam power plant with reheat cycle.	5	2	10
	ENGOREERING COLLEGE			
11.	In a steam turbine Steam at 20 bar & 350°C is expanded to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assume ideal processes, Calculate per kg of steam the network and the cycle efficiency	5 3		10

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A,B splits or as a single Question for 10 marks